Getting Ready for Geometry

- 1. Solving Multi-Step Equations
- 2. Solving Multi-Step Inequalities
- 3. Writing Linear Equations in Slope-Intercept Form
- 4. Writing Linear Equations in Point-Slope Form
- 5. Solving Linear Systems
- 6. Combining Polynomials
- 7. Factoring Polynomials and Solving Polynomial Equations
- 8. Applying Exponent Properties

Solve $5x - 2(4x + 3) =$	= 9.	
5x - 2(4x + 3) = 9	Write original equation	If you reach a step that is false, the equation
5x - 8x - 6 = 9	Distributive property	has no solution.
-3x - 6 = 9	Combine like terms	
-3x = 15	Add 6 to each side	If you reach a step that has a variable or
x = -5	Divide each side by -3	number equal to itself, the equation has infinite solutions.

Solve the equation. Check your solution:

1.
$$3w + 4w - 2 = 12$$

5. 8a - 3(2a + 5) = 13

2.
$$4y - (y - 4) = -20$$

6. $16h - 4(5h - 7) = 4$

3.
$$z + 5 - 4z = 8$$

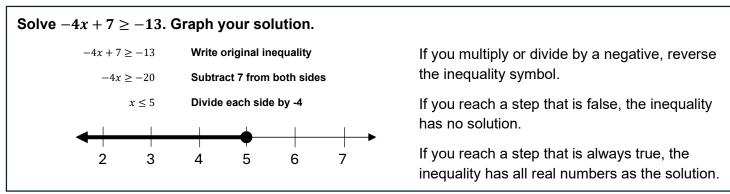
7. $\frac{3}{2}(b+1) = 3$

4.
$$c + 2c - 5 - 5c = 7$$

8. $\frac{4}{3}(2x - 1) = -12$

9.
$$\frac{6}{5}(8k+2) = -36$$

10.-3z - 1 = 8 - 3z


$$14.6(2a+10) = 5(a+5)$$

11.16 - 2m = 5m + 9 15. $\frac{1}{12}(48 + 24b) = 2(17 - 4b)$

12.2.9w + 5 = 4.7w - 7.6

16. 1.5(n + 20) = 0.5(n + 60)

Solving Multi-Step Inequalities

Solve the inequality. Graph your solution.

1. 2g + 11 < 25

4. 3(y+1) < 3y + 7

2.
$$\frac{2}{3}x - 4 \ge 1$$

5. 8(m-1) > -8 + 8m

3. $1 - 3x \le -14 + 2x$

6. $-3(2n-1) \ge 1-8n$

8. -8x + 2x - 16 < -5x + 7x12. $-9 > -\frac{1}{3}x + 6$

9. -x < -x + 7(x - 2) 13. $\frac{3}{5}x - 3 \ge \frac{3}{10}x - 9$

 $10.-5n+6 \ge -7(5n-6)-6n$

 $14.a - 6 \le 15 + 8a$

Writing Linear Equations in Slope-Intercept Form

Slope-Intercept Form: $y = mx + b$	Ex 2 – Through (-2, -6) and a slope of 2	
Slope Formula: $m = \frac{y_2 - y_1}{x_2 - x_1}$	y = mx + b	Write slope-intercept form
	-6 = 2(-2) + b	Substitute values for y, m, and x
Write an equation with the information given.	-2 = b	Solve for b
Ex 1 – Slope = $\frac{2}{3}$; y-intercept = 4	y = 2x - 2	Substitute values for m and b
$y = \frac{2}{3}x + 4$		

Write an equation in slope-intercept form.

1. slope = 3; y-intercept = -10

4. Through (-3, -1) and a slope of 4

2. slope = $\frac{4}{9}$; y-intercept = 5

5. Through (-2, 1); m = 1

3. m = $\frac{-2}{11}$; b = 7

6. Through (8, -4); m = -3

8. Through (9, -2) and (-3, 2)

10. You have a \$25 gift card for a bagel shop. A bagel costs \$1.25. Write an equation that gives the amount (in dollars) that remains on the card as a function of the total number of bagels you have purchased so far. How much money is on the card after you buy 2 bagels?

Writing Linear Equations in Point-Slope Form

Point-Slope Form: $y - y_1 = m(x - x_1)$

Slope Formula: $m = \frac{y_2 - y_1}{x_2 - x_1}$

Parallel Lines have the same slope. Perpendicular lines have negative reciprocal slopes.

Write an equation with the information given.

Ex 1 – Through (-1, -8) and (3, 4)

 $m = \frac{-8-4}{-1-3} = \frac{-12}{-4} = 3$ Find the slope $y - y_1 = m(x - x_1)$ Write point-slope form y - 4 = 3(x - 3)Substitute values

Write an equation in point-slope form.

Ex 2 – Through (-4, -2) and perpendicular to the line y = 4x - 7

The slope of the line is 4 so the slope of the perpendicular line is $\frac{-1}{4}$

$y - y_1 = m(x - x_1)$	Write point-slope form
$y - (-4) = \frac{-1}{4} (x - (-2))$	Substitute values
$y+4 = \frac{-1}{4}(x+2)$	Simplify

4. Through (8, -8) and (-3, -2)

2. Through (4, 7) and (5, 1)

5. Through (0, 2); parallel to y = -4x + 6

3. Through (9, -2) and (-3, 2)

6. Through (0, 2); perpendicular to y = -4x + 6

- 7. Through (2, -3); parallel to y = -2x 3
- 9. You have a \$25 gift card for a bagel shop. A bagel costs \$1.25. Write an equation that gives the amount (in dollars) that remains on the card as a function of the total number of bagels you have purchased so far. How much money is on the card after you buy 2 bagels?

8. Through (6, 0); perpendicular to $y = \frac{3}{4}x - \frac{1}{4}$

Solving Linear Systems

Solve the linear system by substitution:		Solve the linear system by elimination:	
3x + y = -9		5x - y = 8	
y = 5x + 7		-5x + 4y = -17	
3x + 7 = -9	Write 1 st equation	5x - y = 8	Add the equations together
3x + (5x + 7) = -9	Substitute in 2 nd equation	$\frac{-5x+4y=-17}{3y=-9}$ Add the equation	
x = -2	Solve for x	y = -3	Solve for y
y = 5(-2) + 7 = -3	Substitute x-value into 2 nd equation	5x - (-3) = 8	Substitute y into the 1 st equation
Solution: (-2, -3)		<i>x</i> = 1	Solve for x
		Solution: (1, -3)	

Solve the linear system using substitution.

4	y = 2x - 7	
١.	x + 2y = 1	

3.
$$\begin{array}{c} 2x + y = -15\\ y - 5x = 6 \end{array}$$

$$\begin{array}{c} x + 4y = 9\\ x - y = 4 \end{array}$$

4. Kara spends \$16 on tubes of paint and disposable brushes for an art project. Each tube of paint costs \$3, and each disposable brush costs \$0.50. Kara purchases twice as many brushes as tubes of paint. Find the number of number of brushes and the number of tubes of paint that she purchases.

Solve the linear system using elimination.

5.
$$\begin{array}{c} -x + y = -4 \\ 2x - 3y = 5 \end{array}$$

7. $\begin{array}{c} 3x - 5y = -7 \\ -4x + 7y = 8 \end{array}$

6.
$$x + 6y = 28$$

 $2x - 3y = -19$

8.
$$8x - 7y = -3 \\ 6x - 5y = -1$$

Combining Polynomials

Adding/Subtracting polynomials	Multiplying polynomials	
Ex 1:	$(2x^2 + 4x + 1)(3x - 2)$	Original product
$(2x^3 + 4x^2 + 1) + (5x^2 + x + 4) = 2x^3 + 9x^2 + x + 5$	$6x^3 - 4x^2 + 12x^2 - 8x + 3x - 2$	Distributive Property
Ex 2:	$6x^3 + 8x^2 - 5x - 2$	Combine like terms
(3x2 + 2) - (4x2 - x - 9) = -x2 + x + 11	Keep terms in descending order of degree	
Find the sum or difference.		

1. $(9x + 6x^3 - 8x^2) + (-5x^3 + 6x)$

4. $(3n^2 - 4n + 1) - (8n^2 - 4n + 17)$

2. $(7a^3 - 4a^2 - 2a + 1) + (a^3 - 1)$

5. $(2b^3 + 8) - (-3b^3 + 7b - 5)$

3.
$$(11y^5 + 3x^2 - 4) + (y^2 - y + 1)$$

6. $(-k^2 + 7k + 5) - (2k^4 - 3k^3 - 6)$

Find the product in simplest terms.

7. (3y+4)(y+2)10. $(x^2+3x-1)(x+7)$

8. $(2x^2 + x)(x - 3)$

11. $(a^2 + 4)(2a^2 - 2a - 4)$

9. $(5b-1)(b^2+6)$

12. $(w^2 - 4w + 2)(3w^2 + 2w - 5)$

Factoring Polynomials and Solving Polynomial Equations

Special Factoring Rules:	$Ex 2 - y^2 + 15y + 26$	
$x^2 - y^2 = (x - y)(x + y)$	$y^2 + 15y + 26$	Write original problem
$x^{2} + 2xy + y^{2} = (x + y)^{2}$	(y + 13)(y + 2)	Factor
$x^2 - 2xy + y^2 = (x - y)^2$	Solve the following e	quation.
Factor the following polynomials.	$Ex\ 3 - 6x^2 + 42x = 0$	
Ex $1 - 4x^2 + 32x$	$6x^2 + 42x = 0$	Write original equation
	6x(x+7)=0	Factor left side
$4x^2 + 32x$ Write original problem	6x = 0 or x + 7 = 0	Zero Product Property
4x(x+8) Factor the GCF	x = 0 or x = -7	Solve for x

Factor the polynomials.

1.
$$8x^2 - 24x$$
 5. $b^2 - 5b - 14$

2. $6y^4 - 20y^2$

6. $a^2 + 5a - 84$

3. $p^2 - 81$

7. $3w^2 + 4w - 4$

4. $n^2 + 10n - 11$

Solve the following polynomial equations.

8.
$$2a^2 + 26a = 0$$

12. $x^2 + 8x + 15 = 0$

9. $5y^2 = -50y$

13. $4n^2 + 3 = 7n$

 $10.w^2 - 4 = 0$

14.7 $x^2 - 8x + 1 = 0$

 $11.b^2 - 10b + 21 = 0$

Applying Exponent Properties

Exponent Rules:	Ex 1 - $\left(\frac{x^3}{y}\right)^4 \cdot \frac{2}{x^5}$	
Product: $x^a x^b = x^{a+b}$		
Quotient: $\frac{x^c}{x^d} = x^{c-d}$	$\frac{(x^3)^4}{y^4} \cdot \frac{2}{x^5}$ Power property	
Power: $(x^e)^f = x^{ef}$	$\frac{x^{12}}{y^4} \cdot \frac{2}{x^5}$ Power property	
Zero: $x^0 = 1$	$\frac{2x^{12}}{x^5y^4}$ Multiply fractions	
Negative: $x^{-g} = \frac{1}{x^g}$	$\frac{2x^7}{y^4}$ Quotient Property	

Simplify the expression.

1. $4^3 \cdot 4^3$	5. $(2x^2)^4 \cdot x^5$
--------------------	-------------------------

2. $z^3 \cdot z^5 \cdot z^5$

6. $\frac{(-3)^7}{(-3)^4}$

3. $(y^4)^5$

7. $\frac{5^2 \cdot 5^4}{5^3}$

4. $-(8xy)^2$

8. $\frac{6}{7r^{10}} \cdot \left(\frac{r^5}{p}\right)^5$

$$9. \quad \left(\frac{7x^5y^0}{y^2}\right)^3$$

11.3-2

 $10.7^{-5} \cdot 7^{5}$

 $12.\frac{x^{-2}}{xy^2}$