Getting Ready for Precalculus

- 1.Radicals
- 2. Geometry
- 3. Writing Linear Equations in Slope-Intercept Form
- 4. Solving Linear Systems
- **5.Applying Exponent Properties**
- 6. Combining Polynomials
- 7. Factoring Polynomials and Solving Polynomial Equations
- 8. Multiplying and Dividing Rational Expressions
- 9. Simplifying and Solving Rational Expressions

Radicals

To simplify means that:

- 1. No radicand has a perfect square factor
- 2. There is no radical in the denominator

Product Property: $\sqrt{ab} = \sqrt{a}\sqrt{b}$

Quotient Property: $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

If the denominator contains two terms, multiply the numerator and denominator by the conjugate of the denominator (i.e. the conjugate of $3 + \sqrt{2}$ is $3 - \sqrt{2}$)

Simplify each of the following.

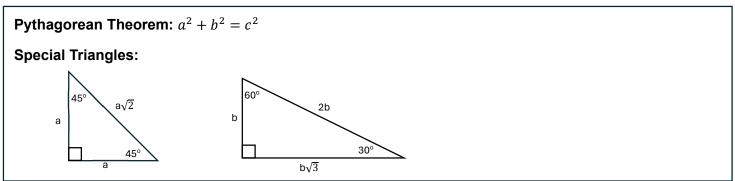
1.
$$\sqrt{32}$$

Examples:

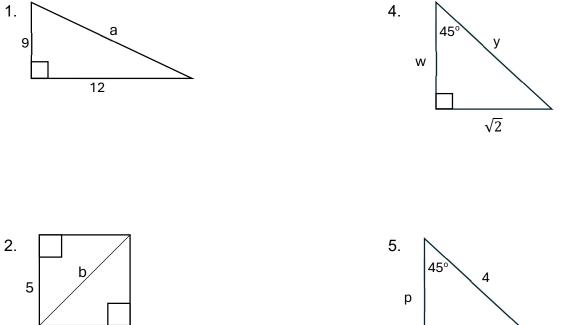
1. Simplify
$$\sqrt{24}$$

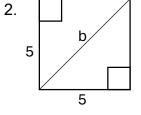
 $\sqrt{24} = \sqrt{4}\sqrt{6} = 2\sqrt{6}$
2. Simplify $\sqrt{\frac{7}{2}}$
 $\sqrt{\frac{7}{2}} = \frac{\sqrt{7}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{14}}{\sqrt{4}} = \frac{\sqrt{14}}{2}$

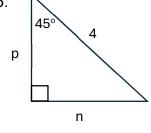
6. $\sqrt{60}\sqrt{105}$

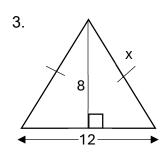

- 2. $\sqrt{(2x)^8}$ 7. $(\sqrt{5} \sqrt{6})(\sqrt{5} + \sqrt{2})$
- 3. $\sqrt[3]{-64}$ 8. $\frac{1}{\sqrt{2}}$
- 4. $\sqrt{49m^2n^8}$

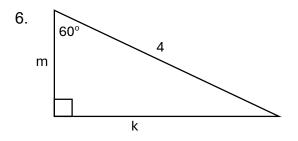
9. $\frac{2}{\sqrt{3}}$

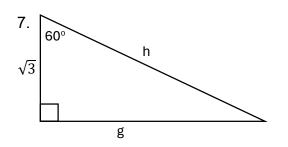

5. $\sqrt{\frac{11}{9}}$

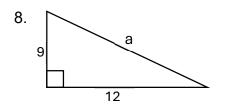

 $10.\frac{3}{2-\sqrt{5}}$


Geometry




Find the value of the missing variables.





Writing Linear Equations in Slope-Intercept Form

Slope-Intercept Form: y = mx + b

Point-Slope Form: $y - y_1 = m(x - x_1)$

Standard Form: Ax + By = C

Slope Formula: $m = \frac{y_2 - y_1}{x_2 - x_1}$

Write an equation in slope-intercept form with the following conditions.

1. Through (-3, -8) and a slope of -5

Write an equation in point-slope form with the following conditions.

4. Through (-3, -8) and a slope of -5

2. Through (4, 3) and (7, -2)

5. Through (0, 2); perpendicular to y = -4x + 6

3. x-intercept = 3 and y-intercept = 2

6. Through (2, -3); parallel to y = -2x - 3

Complete the following.

7. State the slope and y-intercept of: 5x - 4y = 8

10. Write the following equation in Slope-Intercept Form: 3x + 4y = 6

8. Find the x-intercept and y-intercept of the equation: 2x - y = 5

11. Write the following equation in Point-Slope Form: 2x - 5y = 7

9. Write the following equation in Standard Form: y = 7x - 5

Solving Linear Systems

Solve the linear syste	em by substitution:	Solve the linear syst	em by elimination:
32	x + y = 6	2 <i>x</i>	+3y = 13
2x - 2y = 4		-5x + 4y = -17	
y = -3x + 6	Solve 1 st equation for y	4x + 6y = 26 $-4x + 3y = 1$	Multiply 1 st equation by 2 and add
2x - 2(-3x + 6) = 4	Substitute into 2 nd equation	$\frac{-4x + 3y = 1}{9y = 27}$	
<i>x</i> = 2	Solve for x	<i>y</i> = 3	Solve for y
y = 0	Substitute back into either equation	2x + 3(3) = 13	Substitute y into the 1 st equation
Solution: (2, 0)		x = 2	Solve for x
		Solution: (2, 3)	

Solve the linear system using substitution.

1	y = 2x - 7	3	2x + y = -15
١.	y = 2x - 7 $x + 2y = 1$	3.	y - 5x = 6

2	x + 4y = 9
Ζ.	x - y = 4

 $4. \quad \begin{array}{c} 2x + y = 4\\ 3x - y = 14 \end{array}$

Solve the linear system using elimination.

5.
$$\frac{-x+y=-4}{2x-3y=5}$$

7. $\frac{3x-5y=-7}{-4x+7y=8}$

6.
$$x + 6y = 28$$

 $2x - 3y = -19$

8x - 7y = -36x - 5y = -1

Applying Exponent Properties

Exponent Rules:	Ex 1 - $\left(\frac{x^3}{y}\right)^4 \cdot \frac{2}{x^5}$	
Product: $x^a x^b = x^{a+b}$		
Quotient: $\frac{x^c}{x^d} = x^{c-d}$	$\frac{\left(x^3\right)^4}{y^4}\cdot\frac{2}{x^5}$	Power property
Power: $(x^e)^f = x^{ef}$	$\frac{x^{12}}{y^4} \cdot \frac{2}{x^5}$	Power property
Zero: $x^0 = 1$	$\frac{2x^{12}}{x^5y^4}$	Multiply fractions
Negative: $x^{-g} = \frac{1}{x^g}$ and $\frac{1}{x^{-g}} = x^g$	$\frac{2x^7}{y^4}$	Quotient Property

Simplify the expression.

1.	$4^3 \cdot 4^3$	5.	$(2x^2)^4 \cdot x^5$
----	-----------------	----	----------------------

2. $z^3 \cdot z^5 \cdot z^5$

6. $\frac{(-3)^7}{(-3)^4}$

3. $(y^4)^5$

7. $\frac{5^2 \cdot 5^4}{5^3}$

4. $-(8xy)^2$

8. $\frac{6}{7r^{10}} \cdot \left(\frac{r^5}{p}\right)^5$

$$9. \quad \left(\frac{7x^5y^0}{y^2}\right)^3$$

11.3-2

 $10.7^{-5} \cdot 7^{5}$

 $12.\frac{x^{-2}}{xy^2}$

Combining Polynomials

Adding/Subtracting polynomials	Multiplying polynomials	
Ex 1:	$(2x^2 + 4x + 1)(3x - 2)$	Original product
$(2x^3 + 4x^2 + 1) + (5x^2 + x + 4) = 2x^3 + 9x^2 + x + 5$	$6x^3 - 4x^2 + 12x^2 - 8x + 3x - 2$	Distributive Property
Ex 2:	$6x^3 + 8x^2 - 5x - 2$	Combine like terms
(3x2 + 2) - (4x2 - x - 9) = -x2 + x + 11	Keep terms in descending c	order of degree
Find the sum or difference.		

1. $(9x + 6x^3 - 8x^2) + (-5x^3 + 6x)$

4. $(3n^2 - 4n + 1) - (8n^2 - 4n + 17)$

2. $(7a^3 - 4a^2 - 2a + 1) + (a^3 - 1)$

5. $(2b^3 + 8) - (-3b^3 + 7b - 5)$

3.
$$(11y^5 + 3x^2 - 4) + (y^2 - y + 1)$$

6. $(-k^2 + 7k + 5) - (2k^4 - 3k^3 - 6)$

Find the product in simplest terms.

7. (3y+4)(y+2)10. $(x^2+3x-1)(x+7)$

8. $(2x^2 + x)(x - 3)$

11. $(a^2 + 4)(2a^2 - 2a - 4)$

9. $(5b-1)(b^2+6)$

12. $(w^2 - 4w + 2)(3w^2 + 2w - 5)$

Factoring Polynomials and Solving Polynomial Equations

Special Factoring Rules:	$Ex 2 - x^3 + 3x^2 + 9x^3$	+ 27
$x^2 - y^2 = (x - y)(x + y)$	$(x^3 + 3x^2) + (9x + 27)$	Pair first two and last two terms
$x^2 + 2xy + y^2 = (x + y)^2$	$x^2(x+3) + 9(x+3)$	Factor the GCF from each pair
$x^2 - 2xy + y^2 = (x - y)^2$	$(x+3)(x^2+9)$	Factor out common term
$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$	Solve the following e	equation.
$x^3 + y^3 = (x + y)(x^2 - xy + y^2)$	$Ex 3 - 6x^2 + 42x = 0$	
Factor the following polynomials.	$6x^2 + 42x = 0$	Write original equation
$Ex \ 1 - y^2 + 15y + 26$	6x(x+7) = 0	Factor left side
$y^2 + 15y + 26$ Write original problem	6x = 0 or x + 7 = 0	Zero Product Property
(y+13)(y+2) Factor	x = 0 or x = -7	7 Solve for x

Factor the polynomials.

1.
$$x^2 + 4x - 12$$

5. $-10b^4 - 15b^2$

2. $6 - 5x - x^2$

6. $9a^2 + 30a + 25$

3. $9n^2 - 4$

7. $27w^3 - 8$

4. $2k^2 + 2n - 60$

Solve the following polynomial equations.

8.
$$2a^2 + 26a = 0$$

12. $x^2 + 25 = 10x$

9. $5y^2 = -50y$

 $13.\,n^2 - 14n + 40 = 0$

 $10.w^2 - 4 = 0$

 $14.2x^3 + 5x^2 + 6x + 15 = 0$

 $11.b^2 - 4b - 12 = 0$

Multiplying and Dividing Rational Expressions

Factor the numerator and denominator completely and cancel any common factors.

When dividing, multiply by the reciprocal of the second expression.

Simplify.

Ex 1 - $\frac{y^2 + 10y +}{5 - 4y - y^2} \div \frac{y^3 + 4y^2 - 21y}{y^2 + 2y - 15}$			
$\frac{y^2 + 10y + 21}{5 - 4y - y^2} \div \frac{y^3 + 4y^2 - 21y}{y^2 + 2y - 1}$	Write original problem		
$\frac{y^2 + 10y + 21}{5 - 4y - y^2} \cdot \frac{y^2 + 2y - 15}{y^3 + 4y^2 - 21y}$	Multiply by the reciprocal		
$\frac{(y+7)(y+3)}{(y+5)(-y+1)} \cdot \frac{(y+5)(y-3)}{y(y-3)(y+7)}$	Factor completely		
$\frac{(y+3)}{y(-y+1)}$	Cancel out common factors		

Simplify the rational expressions.

1. $\frac{5z^3+z^2-z}{3z}$	3.	$\frac{10r^5}{21^2} \cdot \frac{3q}{5r^3}$	
52		<u>41</u> JI	

2. $\frac{m^2-25}{m^2+5m}$

4. $\frac{a^2-5a+6}{a+4} \cdot \frac{3a+12}{a-2}$

5.
$$\frac{3n^2 - 27n}{10n} \div \frac{24n + 2}{15}$$

7.
$$\frac{3x^2-27}{x^2-12x+35} \cdot \frac{x^2-x-20}{x+3}$$

6	$\frac{8k^3-16k^2}{2}$	·	40	$^{3}+16k^{2}$
0.	k-5	·		5k+2

8	$x^2 - 3x - 2$	5x - 25
0.	x-5	$x^2 - 49$

Simplifying and Solving Rational Expressions

When adding or subtracting rational expressions,	Simplify.	
 Factor completely Find the common denominator 	$Ex \ 1 - \frac{3x+1}{x^2+2x} + \frac{5x-4}{2x+4}$	
 Add/subtract the numerators Simplify 	$\frac{3x+1}{x^2+2x} + \frac{5x-4}{2x+4}$	Write original problem
• Simplify	$\frac{3x+1}{x(x+2)} + \frac{5x-4}{2(x+2)}$	Factor completly
When solving rational expressions, multiply each term by the least common denominator of all the	$\frac{2(3x+1)}{2x(x+2)} \cdot \frac{x(5x-4)}{2x(x+2)}$	Rewrite each fraction with the LCD
fractions and solve. Make sure to check for extraneous solutions.	$\frac{6x+2+5x^2-4x}{2x(x+2)}$	Write as one fraction
	$\frac{5x^2+2x+2}{2x(x+2)}$	Simplify

Simplify the rational expressions.

1. $\frac{2x}{5} - \frac{x}{3}$

3. $\frac{2-a^2}{a^2+a} + \frac{3a+4}{3a+3}$

 $2. \quad \frac{b-a}{a^2b} + \frac{a+b}{ab^2}$

4. $\frac{3x-8}{x^2+6x+8} + \frac{2x-3}{x^2+3x+2}$

٦

Solve each equation. Check for extraneous solutions.

5.
$$\frac{12}{x} + \frac{3}{4} = \frac{3}{2}$$

7. $\frac{1}{x-2} + \frac{1}{x^2 - 7x + 1} = \frac{6}{x-2}$

6. $\frac{x+10}{x^2-2} = \frac{4}{x}$

 $8. \quad \frac{5}{x^3 + 5x^2} = \frac{4}{x+5} + \frac{1}{x^2}$